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ABSTRACT 

In this work, we present a method for developing individualized biomathematical models for predicting 

cognitive performance impairment of individuals subjected to total sleep loss. The proposed method uses the 

two-process model of sleep regulation as the underlying parametric model, whose parameters are 

systematically customized for an individual by optimally combining the performance information obtained 

from the individual’s performance measurements with a priori performance information using a Bayesian 

framework. As a result, the models incrementally account for an individual’s uncertain initial state and 

unknown trait characteristics as each new performance measurement from the individual becomes available, 

yielding improved performance predictions. Additionally, the proposed method enables the analytical 

computation of statistically based measures of reliability of the model predictions in the form of prediction 

intervals. 

Results using data from subjects who participated in an 82-h total sleep loss laboratory study showed that the 

proposed method yielded individualized predictions that were up to 43% more accurate than group-average 

model predictions and better captured the circadian and homeostatic variations in the performance data. 

1.0 INTRODUCTION 

An effective strategy to better manage the detrimental effects of sleep loss on Soldier alertness and cognitive 

performance is to use biomathematical models. Biomathematical models can be used to forecast performance 

impairment levels, which can help in planning improved sleep/wake schedules and optimize timing and 

dosing of fatigue countermeasures to attain peak performance at the desired times of the day. As a result, there 

is a growing need to develop more accurate biomathematical models that better characterize an individual’s 

level of fatigue and performance impairment. 

In 2002, the U.S. Department of Defense (DoD) sponsored a Fatigue and Performance Modeling Workshop, 

which compared and contrasted the fatigue and performance modeling capabilities available at that time [1-3]. 

The workshop identified a number of capability gaps and found that, without exception, the existing 

biomathematical models of performance used the two-process model of sleep regulation [4, 5] as their 

underlying parametric modeling platform. One capability gap observed across all approaches was that the 

models were limited to the prediction of group, or population, averages, rather than accounting for and being 

customizable to an individual’s cognitive performance variabilities. This modeling strategy contradicts well-

established findings that indicate significant and systematic differences in performance degradation due to 
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sleep loss among individuals [6-9]. Hence, even if a group-average model could accurately predict mean-

group performance, such a model would be of limited benefit without knowing how this translates into 

predictions at an individual level [10]. Another ubiquitous capability gap was the inability of the models to 

provide statistically based measures of reliability of the model predictions [11]. 

In this work, we present a biomathematical model of fatigue and performance impairment that addresses these 

two shortcomings of existing biomathematical models of performance impairment. First, it accounts for inter-

individual variability in performance impairment, resulting in performance predictions of sleep-deprived 

individuals that are more accurate than those obtained with group-average models. Second, for the first time, 

the current model directly provides analytical expressions for computing statistically based error bounds 

around the model predictions in the form of prediction intervals (PIs).  

We evaluated the proposed method on data consisting of psychomotor vigilance test (PVT) lapses obtained 

from a laboratory study of individuals subjected to 82 h of total sleep loss. The laboratory data allowed us to 

test the new approach under the context of inter- and intra-individual variability encountered in actual 

performance data and compare between individualized and group-averaged model predictions. In particular, 

we tested the proposed approach under two prediction mechanisms, where at each time step we used the most 

recent model-parameter estimates to: 1) make point predictions 10 h ahead and 2) make predictions over the 

next 24 h. The results show that the proposed method yields individualized predictions that are consistently 

more accurate than those of the group-average model, where the accuracy was measured in terms of the root 

mean squared error (RMSE).      

2.0 METHODS 

Here, we describe a recently developed method that uses the two-process model of sleep regulation as the 

underlying parametric modeling framework for predicting individualized performance impairment due to total 

sleep loss [12, 13]. Accordingly, to adapt the parameters and customize a model for a particular individual, we 

used a Bayesian approach, which combines performance information obtained from the individual’s available 

performance measurements with the individual’s a priori performance information. The a priori performance 

information was obtained from performance data generated from the two-process model, with its parameters 

set to a-priori-estimated values [13]. By transforming the entailing nonlinear programming problem (NLP) of 

finding the optimal estimates of the model parameters into a series of linear optimization problems [12], we 

guaranteed unique estimates of the model parameters. As each new performance measurement became 

available, it was augmented to the existing performance measurements and together used to adapt the model 

parameters for that individual. Based on the most recent parameter estimates, we made predictions according 

to a chosen prediction horizon. Using the linear representation of the two-process model [12], we reformulated 

it into an equivalent autoregressive (AR) model, which readily provides analytical expressions for computing 

measures of reliability of the model predictions in the form of PIs [14].     

2.1    Two-Process Model of Sleep Regulation 

The two-process model of sleep regulation consists of two separate processes [4]: process S (sleep 

homeostasis), which is dependent on sleep/wake history, increases exponentially with wake time and 

decreases exponentially with sleep/recovery time to a basal value [5], whose rates of increase/decrease are 

individual specific and have unknown values; and process C (circadian), which is independent of sleep/wake 
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history and represents a self-sustaining oscillator with a 24-h period [15]. The equations comprising the two-

process model at discrete sampling time index k can be expressed as [5, 16] 
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whereS(k) denotes the value of the sleep homeostat at time k, usually scaled between 0 and 1 [16]; C(k) 

denotes a five-harmonic sinusoidal equation that approximates the circadian oscillator under entrained 

conditions [17]; Ts represents the sampling period;
r and d represent the time constants of process S during 

wakefulness and sleep, respectively;  denotes the time period of the circadian oscillator (24 h); ai, where i = 

1,…,5, represents the amplitude of the five harmonics of the circadian process (a1 = 0.97, a2 = 0.22, a3 = 0.07, 

a4 = 0.03, and a5 = 0.001); and  denotes the initial circadian phase [15]. 

2.2    Individual-specific Biomathematical Model Development 

We proposed that the temporal pattern of performance impairment can be represented as the additive 

interaction of processes S and C. Mathematically, performance P(k) at some discrete time k was expressed as 

 

),()()( kCkSkP                                                                                     (4) 

 

where  and  denote real-valued positive parameters that control the relative effect of the two processes on 

performance. For total sleep deprivation, Eq. (4) can be rewritten as  
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where  = exp(-Ts),  = 1/r,  = 2/, .ii aa  To individualize the biomathematical model in Eq. (5), we 

estimated the model parameters using previous performance measurements collected from the individual we 

wish to predict along with a priori performance information. Such a Bayesian method allowed us to make 

predictions as soon as the first performance measurement became available and provided a theoretical 

approach to optimally balance prior information about an individual against recent performance 

measurements. As additional measurements became available, the proposed approach increased its trust in the 

measurements, deemphasizing the prior information, the rate of which became faster or slower as the amount 

of noise in the measurements decreased or increased, respectively.  

 

The key challenge, however, is to correctly estimate the five unknown model parameters in Eq. (5), , , , 

S(0), and , within the context of the Bayesian method. Figure 1 provides two possibilities. Figure 1, left, 

shows a conventional approach, which results in a NLP problem whose solution for model parameters may be 

suboptimal, i.e., may result in a local minimum [18]. Conversely, Fig. 1, right, shows our alternative 

approach, where instead of directly solving the nonlinear two-process model representation in Eq. (5), we 
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transformed it into a series of three linear optimization problems, whose solution, if it exists, is guaranteed to 

be unique [12]. Mathematically, to solve for one of the parameters, , the second approach was expressed as a 

two-step constrained linear least squares (LS) problem    
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where y denotes the N x 1 vector of performance measurements y(k); y~ denotes the M x 1 vector of prior 

performance data );(~ ky  
2

 and 2
 are positive real numbers; and P represents the (N + M) x 1 vector of the 

performance fit ),(kP with k = 1-M, 2-M, ..., N, whose first M elements are represented by P
~

and the remaining 

N elements are represented by P (see Ref. 12 for additional information). The prior performance data y~ was 

generated from the two-process model in Eq. (5), with its parameters set to a priori values, reflective of those 

of an “average” individual.  

 

Once the optimal  was obtained by solving Eq. (6), we obtained the other four parameters by solving the 

associated constrained LS problems (see Refs. 12 and 13 for additional information). Based on the most recent 

parameter estimate obtained by solving Eq. (6) and related equations, we made predictions for a chosen 

prediction horizon, and as soon as a new performance measurement became available we updated y and 

repeated the process to adjust the five model parameters.  

 

 
Figure 1: Two potential approaches to estimate the five parameters of the two-process model for a specific 

individual based on performance measurements from that individual. Left: conventional approach; right: our 
alternative approach. See the text for descriptions of the parameters. 
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We obtained analytical expressions for computing PIs around the model predictions using the linear 

representation of the two-process model in Eq. (5). This was achieved by using the property that P(k) in Eq. 

(5) can be considered as a 12th-order AR process [13], in which, at any time k, P(k) is expressed as a linear 

combination of previous measurements [14, 19], such that   

 

,)()(
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where bi (where i = 1,...,12) denotes the AR model coefficients (see Ref. 12, Appendix B for additional 

information). Finally, by using the analytical expression to compute statistically based error bounds for AR 

model predictions [14], we obtained the following expression for computing PIs with a coverage probability 

of 100(1-)%  

 

,ˆ)()( 2
2/)%1(100  

TZkPkPI bbΣ                                                                                                   (8) 

 

where  represents the significance level; 2/Z represents the percentage point of a standard normal 

distribution with a proportion /2 above it; b denotes the 1 x 12 vector of coefficients bi (with i = 

1,…,12); )(kP denotes the performance prediction at time k given previous measurements y(k-1), y(k-2),…;Σ  
denotes the covariance matrix of )12(),...,1(  kPkP obtained by solving Eq. (6); and

2̂ denotes the user-

provided noise-level estimate of the performance measurements y (see Ref. 12 for additional information). 

 

3.0 RESULTS 

We used data collected from a laboratory study in which 48 healthy adults were kept continuously awake for 

85 h to determine the effects of fatigue countermeasures on performance sustenance during prolonged sleep 

loss [20]. Here, we chose a subset of 11 subjects who were not administered fatigue countermeasures, and for 

whom PVT measures were collected every 2 h for a total of 42 measurements. Figure 2 shows the mean 

performance profile (solid circles) and the standard deviation of the 11 subjects over the 82 h of PVT data 

collection along with group-average model predictions (solid lines).  

The profile of the mean group PVT lapses shows a trend that supported the two-process model framework, 

combining homeostatic and circadian variations with time awake. As previously observed, the inter-individual 

PVT lapse variations increased over time [12]. Figure 2 also shows that the group-average model predictions 

did not accurately forecast the performance profile of the group.  
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Figure 2: Mean and standard deviation of psychomotor vigilance task (PVT) lapse measurements collected every 
2 h for 11 individuals during 82 h of total sleep loss. The solid line shows the performance predictions obtained 

with a group-average model. 

 

We evaluated the prediction capability of the proposed approach under two predictions mechanisms, where, 

based on the most recent parameter estimates, we made: 1) point predictions 10 h ahead and 2) predictions up 

to 24 h ahead. For illustration purposes, we selected 3 of the 11 individuals in the study, each representing one 

of three different sleep-loss phenotypes: relatively vulnerable to sleep loss, relatively average sensitivity to 

sleep loss, and relatively resilient to sleep loss. In each simulation, we set the a priori values of the five 

parameters in Eq. (5) to those used by Rajaraman et al. [13] and used the equation to generate prior 

performance data. These same parameters were used for the group-average model predictions in all 

simulations. In the simulations, we set the noise level estimate 
2̂ in Eq. (8) to 77.60, representing a typical 

noise level observed in PVT lapse data [21]. 

Figure 3 shows the measured PVT lapses (solid circles) for the average (top), vulnerable (middle), and 

resilient (bottom) subjects along with the group-averaged model predictions (solid lines) and the 10-h-ahead 

individualized predictions (dashed lines) and their corresponding 95% PIs (dotted lines). We used the RMSE, 

defined as the squared root of the mean of the square of the differences between predicted and measured PVT 

lapses, as a metric to quantify the accuracy of the predictions (the smaller the RMSE, the better is the resulting 

prediction) [14]. For the 10-h-ahead predictions, the RMSEs suggested that the individualized predictions 

were up to 43% more accurate than the group-averaged model predictions. Initially, the individualized 

predictions for all three individuals were close to the group-averaged predictions, as the Bayesian approach 

placed more trust in the a priori performance information (i.e., the group-average model) compared with the 

individual’s measurements. However, as more of the individual’s measurements became available, the 

individualized predictions were closer to the performance data and captured its circadian and homeostatic 

variation better than the group-averaged model predictions. Moreover, the corresponding analytically 

computed 95% PIs almost entirely covered the future performance measurements, reflecting the accuracy of 

our method for computing reliability of the model predictions.  
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Figure 4 shows the individualized predictions up to 24 h ahead for the average (left), vulnerable (middle), and 

resilient (right) subjects in snapshots taken at 6-h intervals. The first snapshot (Fig. 4, top row) was taken after 

collecting the 12th measurement (i.e., 22 h of time awake). Thereafter, the following snapshots were taken 

after every 6 h, with the final snapshot (Fig. 4, bottom row) taken after 58 h of time awake. The results 

indicated that initially, when only a few performance measurements (solid circles) were available for model 

individualization, the individualized predictions (solid lines) up to 24 h head did not accurately capture the 

performance trend in the future measurements (solid squares). However, as more PVT lapse measurements 

became available and the model parameters were better customized to each subject (after 34 h), the 

individualized predictions better captured the circadian and homeostatic variations in the future performance 

data for each of the individuals. 
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Figure 3: Individualized model predictions for three subjects with different sleep-loss phenotypes [average 
sensitivity to sleep loss (top), vulnerable to sleep loss (middle), and resilient to sleep loss (bottom)]. The solid 
circles in each panel represent the measured psychomotor vigilance task (PVT) lapses, which were measured 

every 2 h. The dashed lines represent the 10-h-ahead predictions, whereas the dotted lines represent the 
corresponding analytically computed 95% prediction intervals. The solid line in each panel represents group-

average model predictions. The smaller the root mean squared error (RMSE), the better is the prediction. 
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Figure 4: Individualized model predictions up to 24 h ahead for the three subjects [average (left), vulnerable 
(middle), and resilient (right)] shown in Fig. 3. In each panel, the solid circles represent previous PVT lapse 
measurements, the solid squares represent future PVT lapse measurements, and the solid lines represent 

predictions up to 24 h ahead. 
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4.0 CONCLUSIONS 

In this work, we presented a new method for individualized performance prediction for sleep-deprived 

individuals based on the two-process model of sleep regulation. This method combined an individual’s current 

and past performance measures and a priori performance information in a Bayesian formalism to customize 

the models and individualize the predictions. As a result, model individualization and prediction could 

commence as soon as the first performance measurement from an individual became available. However, 

unlike other methods, which require solving a NLP problem for finding the optimal parameter estimates, the 

proposed method, using the linear representation of the two-process model [12], transformed the NLP 

problem into a series of linear optimization problems, which guarantee unique estimates of the five parameters 

of the two-process model parameters, avoiding brute-force, grid-search procedures [21].  

Additionally, the current work, for the first time, provided statistically based error bounds around the model 

predictions in the form of PIs. This was achieved by taking advantage of the linear representation of the two-

process model [12], which allowed for reformulating the two-process model into an equivalent AR model. 

The AR model formulation of the two-process model provided an analytical expression for computing PIs, 

bypassing the need to first compute confidence intervals around the model parameter estimates before 

extrapolating these uncertainties about the model predictions [21].  

Using PVT measurements from a laboratory study, the proposed method yielded 10-h-ahead individualized 

predictions for three sleep-loss phenotypes that were up to 43% more accurate than the group-average 

predictions. Also, the corresponding 95% PIs almost entirely covered the entire set of measurements. Using 

the same data set, we showed that the ability to capture circadian and homeostatic variations in future 

measurements (up to 24 h ahead) by the individualized predictions increased as the number of performance 

measurements for model individualization increased, reflecting the adaptive nature of the proposed model. 

Despite the advances made by the proposed method in individualized performance predictions for sleep-

deprived individuals, there exist some limitations. As with any approach using Bayesian inference, a “good” 

choice of the prior performance information, i.e., the prior parameter values, is key for obtaining optimal 

results [22]. Another limitation lies in the assumption that measures of performance, such as PVT lapses, 

would be available on a frequent basis, which may not be possible in real-world settings, where it is infeasible 

to discontinue work-related tasks for administering performance tests. Also, we note that, although PVT is 

arguably one of the most sensitive measures to sleep loss and one of the most practical for operational use 

[23], it may not accurately reflect the real, work-related performance of individuals.   

Our future modeling efforts will focus on developing models for individualized performance predictions for 

individuals exposed to chronic/partial sleep restriction. Also, we will focus on developing models that can 

predict the effect of stimulants, such as caffeine, on performance sustenance at an individual level. In addition, 

we will evaluate the performance of the proposed method on other outcome measures of performance, such as 

the Karolinska sleepiness scale [24], the Stanford sleepiness scale [25], the serial addition/subtraction task 

[26], and the digit symbol substitution task [27]. 

An extensive effort is still required to fully address the capability gaps in biomathematical models of fatigue 

and performance identified at the DoD-sponsored Fatigue and Modeling Workshop [2, 3, 28]. Nonetheless, 

the work described here is a significant step toward closing these research gaps and developing models that 

accurately predict cognitive performance impairments due to sleep deprivation at an individual level. 



Individualized Management of Fatigue and Cognitive 
Performance Impairment through Biomathematical Modeling 

RTO-MP-HFM-181 28 - 11 

 

 

5.0 REFERENCES 

[1] D. F. Neri, "Preface: Fatigue and performance modeling workshop, June 13-14, 2002," Aviation 

Space & Environmental Medicine, vol. 75, pp. A1-3, 2004. 

[2] M. M. Mallis, S. Mejdal, T. T. Nguyen, and D. F. Dinges, "Summary of the key features of seven 

biomathematical models of human fatigue and performance," Aviation Space & Environmental 

Medicine, vol. 75, pp. A4-14, 2004. 

[3] K. E. Friedl, M. M. Mallis, S. T. Ahlers, S. M. Popkin, and W. Larkin, "Research requirements for 

operational decision-making using models of fatigue and performance," Aviation Space & 

Environmental Medicine, vol. 75, pp. A192-9, 2004. 

[4] A. A. Borbely, "A two process model of sleep regulation," Hum Neurobiol, vol. 1, pp. 195-204, 1982. 

[5] S. Daan, D. G. Beersma, and A. A. Borbely, "Timing of human sleep: recovery process gated by a 

circadian pacemaker," American Journal of Physiology, vol. 246, pp. R161-83, 1984. 

[6] W. B. Webb and C. M. Levy, "Effects of spaced and repeated total sleep deprivation," Ergonomics, 

vol. 27, pp. 45-58, January 1984. 

[7] H. P. Van Dongen, M. D. Baynard, G. Maislin, and D. F. Dinges, "Systematic interindividual 

differences in neurobehavioral impairment from sleep loss: evidence of trait-like differential 

vulnerability," Sleep, vol. 27, pp. 423-33, May 2004. 

[8] R. Leproult, E. F. Colecchia, A. M. Berardi, R. Stickgold, S. M. Kosslyn, and E. Van Cauter, 

"Individual differences in subjective and objective alertness during sleep deprivation are stable and 

unrelated," American Journal of Physiology - Regulatory Integrative & Comparative Physiology, vol. 

284, pp. R280-90, 2003. 

[9] R. T. Wilkinson, "Interaction of lack of sleep with knowledge of results, repeated testing, and 

individual differences," J Exp Psychol, vol. 62, pp. 263-71, September 1961. 

[10] J. Reifman and P. Gander, "Commentary on the three-process model of alertness and broader 

modeling issues," Aviat Space Environ Med, vol. 75, pp. A84-8, March 2004. 

[11] J. Reifman, "Alternative methods for modeling fatigue and performance," Aviat Space Environ Med, 

vol. 75, pp. A173-80, March 2004. 

[12] S. Rajaraman, A. V. Gribok, N. J. Wesensten, T. J. Balkin, and J. Reifman, "Individualized 

performance prediction of sleep-deprived individuals with the two-process model," J Appl Physiol, 

vol. 104, pp. 459-68, 2008. 

[13] S. Rajaraman, A. V. Gribok, N. J. Wesensten, T. J. Balkin, and J. Reifman, "An improved 

methodology for individualized performance prediction of sleep-deprived individuals with the two-

process model," SLEEP (In Press), 2009. 

[14] C. Chatfield, The analysis of time series: An introduction, 6th ed. Boca Raton: Chapman & Hall/CRC, 

2004. 

[15] P. Achermann and A. A. Borbely, "Combining different models of sleep regulation," J Sleep Res, vol. 

1, pp. 144-47, June 1992. 

[16] A. A. Borbely and P. Achermann, "Sleep homeostasis and models of sleep regulation," J Biol 

Rhythms, vol. 14, pp. 557-68, December 1999. 

[17] E. B. Klerman and M. S. Hilaire, "On mathematical modeling of circadian rhythms, performance, and 

alertness," Journal of Biological Rhythms, vol. 22, pp. 91-102, 2007. 

[18] K. Schittkowski, Numerical data fitting in dynamical systems: A practical introduction with 

applications and software. Dordrecht; Boston: Kluwer Academic Publishers, 2002. 

[19] A. V. Gribok, M. J. Buller, and J. Reifman, "Individualized short-term core temperature prediction in 

humans using biomathematical models," IEEE Trans Biomed Eng, vol. 55, pp. 1477-87, May 2008. 

 

 



Individualized Management of Fatigue and Cognitive 
Performance Impairment through Biomathematical Modeling 

28 - 12 RTO-MP-HFM-181 

 

 

[20] N. J. Wesensten, W. D. Killgore, and T. J. Balkin, "Performance and alertness effects of caffeine, 

dextroamphetamine, and modafinil during sleep deprivation," J Sleep Res, vol. 14, pp. 255-66, 

September 2005. 

[21] H. P. Van Dongen, C. G. Mott, J. K. Huang, D. J. Mollicone, F. D. McKenzie, and D. F. Dinges, 

"Optimization of biomathematical model predictions for cognitive performance impairment in 

individuals: accounting for unknown traits and uncertain states in homeostatic and circadian 

processes," Sleep, vol. 30, pp. 1129-43, September 2007. 

[22] V. S. Cherkassky and F. Mulier, Learning from data: Concepts, theory, and methods. New York: 

Wiley, 1998. 

[23] T. J. Balkin, P. D. Bliese, G. Belenky, H. Sing, D. R. Thorne, M. Thomas, D. P. Redmond, M. Russo, 

and N. J. Wesensten, "Comparative utility of instruments for monitoring sleepiness-related 

performance decrements in the operational environment," Journal of Sleep Research, vol. 13, pp. 219-

27, September 2004. 

[24] T. Akerstedt and M. Gillberg, "Subjective and objective sleepiness in the active individual.," Int J 

Neuroscience, vol. 52, pp. 29-37, 1980. 

[25] E. Hoddes, V. Zarcone, H. Smythe, R. Phillips, and W. C. Dement, "Quantification of sleepiness - 

new approach," Psychophysiology, vol. 10, pp. 431-36, 1973. 

[26] D. R. Thorne, S. G. Genser, H. C. Sing, and F. W. Hegge, "The Reed, Walter performance assessment 

battery," Neurobehavioral Toxicology and Teratology, vol. 7, pp. 415-18, 1985. 

[27] D. Wechsler, "The psychometric tradition - developing the Wechsler adult intelligence scale," 

Contemporary Educational Psychology, vol. 6, pp. 82-85, 1981. 

[28] D. F. Dinges, "Critical research issues in development of biomathematical models of fatigue and 

performance," Aviation Space & Environmental Medicine, vol. 75, pp. A181-91, 2004. 

 

 

ACKNOWLEDGEMENTS 
  
This work was funded, in part, by the Military Operational Medicine Research Area Directorate of the  

U.S. Army Medical Research and Materiel Command, Ft. Detrick, MD.  

 

DISCLAIMER 

The opinions or assertions contained herein are the private views of the authors and are not to be  

construed as official or as reflecting the views of the U.S. Army or the U.S. DoD. This paper has been  

approved for public release with unlimited distribution. 

 


